Deep photo
نویسندگان
چکیده
منابع مشابه
Deep Semantics-Aware Photo Adjustment
Automatic photo adjustment is to mimic the photo retouching style of professional photographers and automatically adjust photos to the learned style. There have been many attempts to model the tone and the color adjustment globally with low-level color statistics. Also, spatially varying photo adjustment methods have been studied by exploiting high-level features and semantic label maps. Those ...
متن کاملSupplemental Document for Deep Photo Style Transfer
This document contains: links to two user studies (section 1), comparison against Wu et al. [6] (section 2), results with only semantic segmentation or photorealism regularization (section 3), merging classes for DilatedNet [1] Segmentation (section 4), a solution for handling noisy (section 5) or high-resolution (section 6) input, an extension for CNNMRF in photographic transfer (section 7), a...
متن کاملDeep Aesthetic Learning Estimating Photo Aesthetic Rating Using Deep Convolutional Neural Network
Deep Learning has been widely applied in several computer vision applications such as item recognition and image retrieval. In addition to identifying what a image contains, it is also a interesting problem to explore about whether the image is appealing or the composition of the items are highly rated aesthetically. There are multiple studies using hand-designed or datadriven model to quantify...
متن کاملمقاله تصویری (Photo Essay)
مقاله تصویری (Photo Essay) دکتر مریم آلطه: استادیار- چشمپزشک- دانشگاه علوم پزشکی شهید بهشتی دکتر حمید فاتح مقدم: دستیار چشمپزشکی- دانشگاه علوم پزشکی شهید بهشتی دکتر حمیدرضا حسنی: فلوشیپ قرنیه- چشمپزشک- دانشگاه علوم پزشکی شهید بهشتی تهران- پاسداران- بوستان نهم- خیابان پایدارفرد (خیابان امیر ابراهیمی)- پلاک 23- مرکز تحقیقات چشم این مقاله در نشریه "Journal of Ophthalmology and Visi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Graphics
سال: 2008
ISSN: 0730-0301,1557-7368
DOI: 10.1145/1409060.1409069